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Abstract. We consider the problem of computing quantiles on ranges of
a sequence when symbols have multiplicities: am stands form consecutive
copies of a. We extend the known wavelet-tree-based solution for range
quantile queries to handle this case. The result builds on a known space-
efficient structure for bitvectors with long runs of 0s and 1s, which favors
select queries at the expense of rank queries. Since our solution mostly
uses rank queries, we introduce a new format for such bitvectors which
instead favors rank, as well as either one of select0 or select1.

1 Introduction

Consider the following motivating problem. We have collected per-second request
latency distributions for a networked service and stored them as HDR histograms
[15]. These histograms enable accurate latency estimation across various quan-
tiles, including tail latencies. However, if we store individual histograms as arrays
and want to query the combined quantiles across a longer time interval, merging
histograms becomes expensive, particularly when they are sparse and contain
many zero buckets. Instead, we can store the sequence of (nonempty) histogram
buckets and their values, and aim to compute quantiles over ranges that cover
several histograms, so as to retrieve their combined quantile information. We
call these weighted range quantile queries because every bucket is weighted by
its histogram value and those weights are added to compute the quantiles.

Formally, our interest is in storing a sequence S = (s1,m1) · · · (sn,mn), where
si ∈ [1 . . σ] are symbols over an alphabet, and mi > 0 are integer multiplicities.
Over this sequence, we want to carry out queries weightedQuantile(S, i, j, k),
which return what would be the kth symbol if we built the sequence smi

i · · · smj

j

and sorted it by increasing symbol value (sm denotes m copies of symbol s).
The unweighted version of this problem, where all mi = 1, is called a range

quantile query. Gagie et al. [3] showed that if we represent S with a wavelet tree
data structure [4, 10], range quantile queries can be solved in time O(log σ). Note
that a plain representation of S takes n lg σ bits; its wavelet tree representation
replaces it and takes just n lg σ + o(n lg σ) bits.

A simple solution like representing instead S′ = sm1
1 · · · smn

n , plus a bitvector
to mark the beginning of each new symbol, retains the O(log σ) time complexity

⋆ Funded in part by ANID – Millennium Science Initiative Program – Code ICN17 002,
and Fondecyt Grant 1-230755.



2 Gonzalo Navarro and Yuri Vishnevsky

but is unaffordable in space, which becomes at least N lg σ bits, where N =
|S′| =

∑
i mi is the sum of all the multiplicities.

We show, instead, that a solution using O(n log N
n log σ) bits can support

weighted range quantile queries in time O(log N
n log σ). Our solution builds on

rank queries on bitvectors that have runs of 0s and 1s (such queries tell the
number of 1s up to a certain position in the bitvector [5]). A space-efficient rep-
resentation of bitvectors with runs [11, Sec. 4.4.3] is not well optimized for rank
queries, but rather for their inverse, select0 and select1, which tell the position
of the jth copy of 0 or 1 in the bitvector [5]. Our second contribution is a new
representation for bitvectors with runs, which is optimized for rank queries and
efficiently supports either select0 or select1

2 Basic Concepts

A bitvector B[1 . . N ] is a sequence of N 0s or 1s. We are interested in supporting
two basic operations on B apart from accessing any B[i]:

– rankb(B, i), for b ∈ {0, 1}, tells how many times the bit b appears in B[1 . . i],
with rankb(B, 0) = 0 and rankb(B, i) = rankb(B,N) if i > N .

– selectb(B, j), for b ∈ {0, 1}, gives the position of the jth occurrence of the bit
b in B, with selectb(B, 0) = 0 and selectb(B, j) = N + 1 if j > rankb(B,N).

Note that rank0(B, i) + rank1(B, i) = i, so it suffices to support one of those
to have the other in constant additional time. In contrast, one cannot derive
select1 from select0 or vice versa; both must be supported separately.

It is possible to support rank and select in constant time by adding just o(N)
bits to a plain representation of B, that is, using N + o(N) bits in total [1, 9].

Let n be the number of 1s in B. When n ≪ N , compressed representations of
B use space close to its entropy, lg

(
N
n

)
< n lg N

n +1.45n (we use lg to denote the

logarithm in base 2). For example, one can use lg
(
N
n

)
+ o(N) bits of space and

still support access, rank, and select in constant time [14]. Those o(N) extra bits
cannot be below Ω(N/polylogN) if constant time is desired [13]. When n/N is
small enough, this extra space is significant and one may prefer representations
that use n log N

n +O(n) bits and give away constant times, like the next one.

Lemma 1 ([12][11, Sec. 4.4]). Let B[1 . . N ] be a bitvector with n 1s. There
exists a representation of B using n lg N

n +2n+o(n) bits of space and supporting

rank in O(logmin(n, N
n )) time, select1 in O(1) time, and select0 in O(log n) time.

In some applications, bitvectors are not sparse but they are formed by n runs
of consecutive 0s (0-runs) that alternate with runs of consecutive 1s (1-runs). It
is possible to represent such bitvectors in compressed form as well by resorting
to a representation using sparse bitvectors [11, Sec. 4.4.3].

Lemma 2. Let B[1 . . N ] be a bitvector formed by n runs of equal alternating
bits. There exists a representation of B using n lg N

n + 2n + o(n) bits of space

and supporting rank in O(log n) time and select in O(logmin(n, log N
n )) time.
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Proof. Navarro [11, Sec. 4.4.3] describes a scheme where B is represented with
two bitvectors, Z and O, marking the cumulative lengths of the runs of 0s and
1s, respectively, and yields the claimed time complexities. We present here a
more detailed analysis of the space. Since both Z and O have exactly n

2 ± 1 1s,

bitvector Z requires n
2 log |Z|

n/2 +n+o(n) bits and O requires n
2 log |O|

n/2 +n+o(n)

bits. Since |Z|+ |O| = N , by Jensen’s inequality, the maximum is attained when

|Z| = |O| = N
2 , where the sum of both spaces becomes n log N/2

n/2 +2n+o(n). ⊓⊔

Please see Appendix A for a short review on wavelet trees and matrices, as
well as on range quantile queries.

3 Bitvectors with Runs

The known representation for bitvectors described in Section 2 requires O(log n)
time for operation rank, whereas both selects are supported in O(logmin(n, N

n ))

time. In many practical cases, N
n (i.e., the average run length) is much smaller

than n (i.e., the number of runs). We now introduce a new representation that
yields time O(logmin(n, N

n )) for rank and for select0, and O(log n) time for select1
(an analogous scheme yields instead O(logmin(n, N

n )) time for rank and select1,
and O(log n) time for select0). It takes only n additional bits of space over the
known representation, which does not affect the leading term in the space.

Theorem 1. Let B[1 . . N ] be a bitvector with n runs of 0s and 1s. Then there is
a representation of B using n log M

n +3n+ o(n) bits that solves rank and select0
(or select1) in time O(logmin(n, N

n )) and select1 (or select0) in time O(log n).

Let B = 0z11o1 · · · 0zk1ok , where all zi, oi > 0, except possibly z1 and ok. For
simplicity, we work on B′, which adds a 0 at the beginning of B and a 1 at the
end, thus ensuring z1, ok > 0 too. We represent B′ with two (sparse) bitvectors:

– ZO = 0z1+o1−11 · · · 0zk+ok−11, marking the last 1 of every 1-run.
– Z = 0z1−11 · · · 0zk−11, marking the lengths of the 0-runs.

Let N be the length of B′ and n = 2k be its number of runs. Then ZO
has N bits and k = n/2 1s, so its sparse representation takes n

2 lg N
n/2 + n =

n
2 lg N

n + 3
2n + o(n) bits. Bitvector Z also has k 1s and maximum length N , so

its sparse representation takes at most other n
2 lg N

n + 3
2n+ o(n) bits.

The operation rank0(B
′, i) is then implemented as follows:

1. Compute r := rank1(ZO, i), the number of 1-runs fully included in B′[1 . . i].
2. Compute j := select1(ZO, r), so i is i− j positions after the rth 1-run.
3. Compute j− := select1(Z, r) and j+ := select1(Z, r + 1). Thus, j− is the

number of 0s in all the 0-runs fully included in B′[1 . . i], and ℓ = j+ − j− is
the length of the following 0-run, which starts at B′[j + 1].

4. If ℓ ≤ i − j, then i fully includes the next 0-run, and the answer is j− + ℓ.
Otherwise, i is within the next 0-run, and the answer is j− + (j − i).
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In terms of the original bitvector, we have rank0(B, i) = rank0(B
′, i+ 1)− 1,

and as always, rank1(B, i) = i − rank0(B, i). Overall, we perform one rank and
three select1 operations on the sparse bitvectors ZO and Z, which yields the
promised O(logmin(n, N

n )) time. In terms of implementation, j can be easily
obtained as a subproduct of the computation of r, and j+ can be readily obtained
after j−. In practice, then, we expect the time to be close to that of one rank
and one select over sparse bitvectors.

To implement select0(B
′, j), we do as follows:

1. Compute r := rank1(Z, j), the number of full 0-runs until the one that con-
tains the jth 0 in B′.

2. Compute i := select1(Z, r), the number of 0s in those 0-runs.
3. Compute p := select1(ZO, r), the position where the 1-run following the rth

0-run (i.e., the rth 1-run) ends in B′.
4. The answer is then p+ (j − i), since the desired 0 is in the following 0-run.

The algorithm requires one rank and two select1 operations, then taking
O(logmin(n, N

n )) time. In terms of the original bitvector B, we have select0(B, j)
= select0(B

′, j + 1)− 1.
Finally, select1(B, j) can be implemented in O(log n) time by binary search

over the values pi = select1(ZO, i) − select1(Z, i), which gives the number of 1s
up to the end of the ith 1-run. When we find r such that pr−1 < j ≤ pr, it holds
that select1(B

′, j) = select1(ZO, r)−(pr−j) and select1(B, j) = select1(B
′, j)−1.

4 Weighted Range Quantile Queries

Let us first define formally the operation we wish to support.

Definition 1. Given a sequence S = (s1,m1) · · · (sn,mn), where all si ∈ [1 . . σ]
and all mi ∈ N+, query weightedQuantile(S, i, j, k) returns sort(smi

i · · · smj

j )[k],
where sm denotes m copies of s and sort(X) returns the same sequence X with
its symbols sorted in increasing order.

We represent the expanded sequence S′[1 . . N ] = sm1
1 · · · smn

n using a wavelet
matrix data structure. This would require N lg σ+o(N lg σ) bits if we used plain
bitvectors in the wavelet matrix levels. Instead, we notice that every substring of
the form smi

i induces a substring of the form 0mi or 1mi in the bitvector of each
level, because all the occurrences of si go together, either left or right, from each
level to the next. As a result, the bitvector of each wavelet matrix level contains
at most n runs and has total length N . Using the representation for bitvectors
with runs described in Section 2, they require at most n lg N

n + 2n + o(n) bits

per level, for a total space of n(lg N
n + 2 + o(1)) lg σ bits overall. The range

quantile query is solved in time O(log n log σ) if we use the representation of
Lemma 2, because performing rank on those run-length bitvectors takes time
O(log n). Because the queried positions are on S and not on S′, we also need a
mapping bitvector M = 0m1−11 · · · 0mn−11, so that we translate

weightedQuantile(S, i, j, k) = quantile(S′, select1(M, i−1)+1, select1(M, j), k).
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The use of M adds n lg N
n +2n+o(n) bits of space and O(1) time to the scheme.

Theorem 2. Let S = (s1,m1) · · · (sn,mn), where all si ∈ [1 . . σ], all mi ∈ N+,
and N =

∑
i mi. Then S can be represented in n lg N

n (lg σ+1)+n((2+o(1)) lg σ+
2) bits, so that query weightedQuantile is solved in time O(log n log σ).

Using instead our new representation of Theorem 1, we obtain faster query
times with an only marginally larger representation.

Theorem 3. Let S = (s1,m1) · · · (sn,mn), where all si ∈ [1 . . σ], all mi ∈ N+,
and N =

∑
i mi. Then S can be represented in n lg N

n (lg σ+1)+n((3+o(1)) log σ+

2) bits, so that query weightedQuantile is solved in time O(logmin(n, N
n ) log σ).

5 Implementation and Experiments

We implemented in Rust our new representation of run-length bitvectors, as
well as the original approach described in Section 2 for comparison. We used an
existing implementation of sparse bitvectors from J. Sirén4. Our code is available
at https://github.com/iopsystems/wavelet-matrix, which also contains an
implementation of a wavelet matrix supporting weighted quantile queries.

To understand how our approach performs as the number of runs increases
we conducted a set of performance experiments, fixing the number of represented
bits N to 2 billion and measuring space usage and time taken per rank and select
operation as we varied the number of runs n from 1 million to 1 billion. The run
limits were set at random positions in the bitvector.

Times were measured used the Criterion benchmarking library, with all code
compiled using Rust 1.68.0 in release mode with a single codegen unit and LTO
enabled. Benchmarks were performed on a 2019 MacBook Pro with a 2.4 GHz
8-Core Intel Core i9 processor and 64GB of RAM.

Figure 1 shows the results. The fast operations (rank and select0 in our
scheme, both selects in the original one) run in less than a microsecond. The slow
operations (rank in the original representation and select1 in ours) are those that
require binary searches across the underlying sparse bitvectors. Indeed, their log-
arithmic time is seen as approximately linear on our plots, which are logarithmic
on the x axis. Neither approach requires binary search for select0 because both
store the cumulative number of zeros for each 0-run as a sparse bitvector. Fi-
nally, the O(log N

n ) worst-case time complexities of the fast operations should
make their times decrease as n grows. On average, however, with our uniformly
distributed 1s, they take O(1) time [6]. We actually see a slight increase, which
we conjecture owes to cache effects, as the structure uses more space as n grows.

The rightmost plot of the figure shows the space usage per run, which as
expected behaves linearly with log N

n . Coinciding with our analysis, our new
structure uses slightly more space per run, which does not depend on n.

4 https://github.com/jltsiren/simple-sds/blob/main/src/sparse vector.rs
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Fig. 1. Time and space for the existing and our new scheme for bitvectors with runs.

6 Conclusions

We have introduced a new compressed representation of bitvectors with runs,
which is faster than the classic one [11, Sec. 4.4.3] for the rank operation, at
the expense of being slower for one of the two selects, and of using marginally
more space. We also introduced a new problem, called weighted range quantile
queries, which extends classic range quantile queries by allowing multiplicities in
the symbols. We reduced this problem to rank queries on bitvectors with runs,
where our new representation yields a faster solution.

Our wavelet tree (or wavelet matrix) representation using bitvectors with
runs may enable having multiplicities in many other problems on sequences that
have known solutions using standard wavelet trees or matrices [10].

On the other hand, our representation for strings with multiplicities S =
(s1,m1) · · · (sn,mn) is not succinct, as it takes essentially n lg N

n lg σ bits while

S can be represented in essentially n(lg N
n +lg σ) bits and less, where N =

∑
i mi,

by just writing down the symbols si and the δ-codes of the multiplicities mi. An
interesting open problem is whether we can emulate wavelet tree functionality on
a representation of size at most O(n(log N

n +log σ)). Some simple problems, like
supporting rank, select, and access on the expansion of S, can be supported within
that space by maintaining a wavelet tree on Sh = s1 · · · sn and our bitvector M
on the cumulative multiplicities, as done for run-length compressed FM-indexes
[7, 8], for example, but for others, like range quantile queries, this space-efficient
representation does not seem to work.
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A Wavelet trees and matrices

The wavelet tree [4, 10] is a representation of sequences S[1 . . N ] over alphabets
[1 . . σ] that uses N lg σ+o(N lg σ) bits of space and supports, among many other
operations, accessing S[i] and computing rank and select on S (the extended
versions of the queries we defined for bits), in time O(log σ).

Every node v of the wavelet tree handles a range of [1 . . σ] and represents the
subsequence Sv of S formed by the symbols in that range (but it does not store
Sv). The root handles the whole range [1 . . σ] and represents S, and every leaf
represents a range [c . . c] and handles the sequence of the cs in S. The children
of every internal node handling a range [a . . b] halve the range, so the left child
handles [a . .m] and the right child handles [m+ 1 . . b], where m = ⌊(a+ b)/2⌋.
Internal nodes v store a bitvector Bv[1 . . |Sv|] where Bv[i] = 0 if Sv[i] is handled
in the left subtree and Bv[i] = 1 if Sv[i] is handled in the right subtree. Since
the wavelet tree has height ⌈lg σ⌉, many operations that can be solved with a
constant number of rank and select queries per level take time O(log σ) if we
represent the bitvectors Bv with constant-time support of rank and select.
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A relevant operation for this paper is quantile(S, i, j, k), the range quan-
tile query, which returns the kth smallest value in S[i . . j] (considering repeti-
tions) [3]. We start at the root node v with range [i, j]. Let l = rank0(Bv, j) −
rank0(Bv, i−1). If k ≤ l, then in S[i . . j] there are at least k occurrences of sym-
bols in the left half of the alphabet, and thus the kth smallest symbol in S[i . . j]
is handled within the left subtree. Consequently, we proceed recursively on the
left child of the root, updating i := rank0(Bv, i − 1) + 1 and j := rank0(Bv, j).
Otherwise, the answer is on the right subtree, but since we have already l sym-
bols smaller than the kth on the left subtree, we proceed recursively on the right
child with k := k − l, i := rank1(Bv, i− 1) + 1, and j := rank1(Bv, j). When we
arrive to a leaf handling [c, c], the answer to the query is c.

Wavelet trees use O(σ) additional words of space for their pointers. When σ
is large compared to N , this space can be significant. Wavelet matrices [2] con-
catenate all the wavelet tree bitvectors of the same depth d in a single bitvector
Bd[1 . . N ], thereby requiring N lg σ+o(N lg σ) bits in total. Operations rank and
select on the bitvectors Bd suffice to simulate those on the node bitvectors Bv.


